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1  Introduction
As the proverb goes, the eye is a window to your soul. In fact, the eye is also a window 
to your health, as many diseases such as eye diseases, diabetes, cardiovascular, and 
systemic diseases manifest themselves via different structures, especially the blood 
vessels, in an eye. For example, it is of clinical interest to examine the width of artery 
or vein vessels, the branching ratio, the vessel length between junction points, etc. 
As illustrated in, for example, Ref. [1], stemmed from the ophthalmic artery, the 
arterial inflow to the eye is further branched. In particular, the central retinal artery 
travels along the optic nerve and spreads out in branches to cover the retina. Being 
parallel and countercurrent to the central retinal artery, the venous outflow exits 
the eye through the central retinal vein, again along the optic nerve. Together, the 
retinal vasculature is responsible for supplying oxygen and nutrients and removing 
metabolic waste from the retina. Impaired oxygen supply can as well damage the 
health of the retina.

Readouts from vessel structure or vasculature have been linked to various 
diseases. Subtle vessel changes may also occur during the early stage of disease 
cycle. The departure of vasculature geometry from normal state may also underlie 
the development of other signs such as retinal lesions. For example, it is known that 
the vasculature geometry including vessel diameter and tortuosity provide predictive 
information for hypertension, diabetes, Alzheimer disease, and cardiovascular 
disease [2–8]. It is thus used frequently in reliable and automated procedures in 
analyzing the vasculature and its associated properties. This chapter will focus on 
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analyzing vessel structure in retinal images. Note that there also exist artery and vein 
branches that serve the rest part of the eye including cornea and iris, which are not 
the main theme of this chapter.

Retinal imaging has been around for over a hundred years, with the first instrument 
being invented in 1851 [9] and the first practical fundus camera developed in 1921 by 
Gullstrand who was later awarded Nobel Prize for this contribution. Recently, color 
fundus (CF) photography and optical coherence tomography (OCT) are among the 
noninvasive and popular clinical choices.

Vasculature analysis in retinal images has, therefore, a longstanding history. 
Arguably the first research effort was by Matsui et al. [10], 45 years ago, where 
a mathematical morphology approach is construed toward the problem of vessel 
segmentation. Overall, there has been relatively sporadic research efforts in 
the 1970s and 1980s. In particular, the work of Akita and Kuga [11] considers 
building up a holistic approach for understanding retinal fundus images, including 
segmenting retinal blood vessels and recognizing individual artery and vein trees, 
and detecting vessel structural changes such as arteriovenous nicking (AVN). 
Their efforts were ambitious even by current standards, since each of the tasks 
is typically pursued by a separate research paper today. The review paper by 
Gilchrist [12] summarizes these early research activities. Since the 1990s, the 
research activities in retinal vasculature image analysis start to proliferate, 
mostly owing to the change of clinical practice in wide-spread adoption of 
digital retinal imaging. Over the years, it has resulted in an enormous amount 
of literature on wide-spread-related topics. In this chapter, we strive to provide 
an up-to-date account, focusing more on the recent progresses and challenges 
in retinal vessel analysis perspective, especially about the problems of vessel 
segmentation, tracing, and classification, as, for example, shown in Fig. 1 on CF 
images. Regarding the related topics, such as retinal image quality assessment, 
registration and stitching of overlapping retinal images, segmentation of fovea/
macular and optic disk (OD), lesion detection and segmentation, and OCT-based 
segmentation and analysis, they are covered by other chapters of this book. There 
are also review articles: in Ref. [13], Abramoff and coworkers provide an excellent 
overview of the history up to 2010, current status, and future perspective in both 
retinal imaging and image analyses. While the survey of Kirbas and Quek [14] is 
from the general perspective of segmenting and tracing vessels, the review articles 
of Fraz et  al. [15] and Almotiri et  al. [16] focus specifically on retinal vessel 
segmentation. Miri et  al. [17] conduct a comprehensive study of retinal vessel 
classification. Meanwhile, the reviews by Faust et al. [18] and Mookiah et al. [19] 
are dedicated to image-based detecting and diagnosing of diabetic retinopathy 
disease, respectively. The knowledge of retinal scans and vasculature analysis 
could also be helpful in robot-assisted eye surgery [20,21]. In addition to medical 
applications, retinal vasculature analysis has also been used for biometrics and 
authentication purposes, see, for example, Refs. [22,23].
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FIG. 1

Typical retinal vascular annotations of a color fundus image. Panel (A) is an original retinal 
fundus image. Panel (B) marks out the bifurcation and crossing points by yellow circles 
and blue rectangles, respectively. Panel (C) highlights the AVN signature in panel (A), with 
a zoomed-in inlet showing an enhanced image patch by subtracting local mean image 
from the raw image. Panel (D) presents an annotation of blood vessel segmentation, which 
is classified into artery and vein vessels in panel (E). Panel (F) displays the individual 
vascular trees, each with a unique color.
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2  Benchmark datasets and evaluation metrics
2.1  Datasets
Table 1 provides a summary of 12 representative retinal imaging benchmark datasets. 
As some URLs of these published datasets are relocated over the years, we strived to 
identify the current web addresses.

DRIVE1 [24] and STARE2 [25] are two popular benchmarks for vessel 
segmentation. DRIVE contains 40 fundus images of size 768 × 584, obtained using 
Canon CR5 nonmydriatic 3CCD camera with field of view (FOV) of 45 degrees. 
STARE involves 20 fundus images of size 605 × 700 taken from a TopCon TRV-50 
fundus camera at 35-degree FOV. Apart from segmented vessel masks, the artery/
vein vessel annotations are further labeled by RITE3 [26, 27] for DRIVE dataset. 
Azzopardi and Petkov [28] provided vessel junction annotations, including vascular 
bifurcations and crossovers.

HRF4 [29] consists of 45 images, of which one-third are images from healthy 
patients, one-third are patients with diabetic retinopathy (DR), and the rest are 
images of glaucomatous patients. Binary gold standard vessel segmentation images, 
generated by a group of experts, are available for each image. The size of fundus 
images is 3504 × 2336.

CHASEDB15 [30] includes 28 retinal fundus scans from 14 children. Images 
were recorded using a Nidek NM-200-D fundus camera with a 30-degree FOV, with 
a resolution of 999 × 960 pixels. Two experts’ segmentations are available for each 
images as ground truth.

ARIA6 [31] consists of 143 images taken from either healthy subjects, diabetics, 
or patients with age-related macular degeneration (AMD). Obtained with a Zeiss 
FF450+ fundus camera with a 50-degree FOV. In addition to vessel segmentation, 
annotations of the OD and fovea are also provided.

The DR HAGIS7 [32] dataset is composed of 40 fundus images, which were 
acquired in different screening centers in the United Kingdom for DR screening 
purpose, using a Topcon TRC-NW6s, a Topcon TRC-NW8, or a Canon CR DGi 
fundus camera with a horizontal 45-degree FOV. The resulting images are of different 
sizes, being either 4752 × 3168, 3456 × 2304, 3126 × 2136, 2896 × 1944, or 2816 
× 1880 pixels. The dataset is divided into four comorbidity subgroups, that is, DR, 
hypertension, AMD, and glaucoma. Each subgroup comprises 10 images, with the 
image of only one patient being duplicated into two subgroups. Vessel segmentation 
annotation is also provided for each image.

1 See http://www.isi.uu.nl/Research/Databases/DRIVE/.
2 See http://www.ces.clemson.edu/~ahoover/stare/.
3 See https://medicine.uiowa.edu/eye/rite-dataset.
4 See https://www5.cs.fau.de/research/data/fundus-images/.
5 See https://blogs.kingston.ac.uk/retinal/chasedb1/.
6 See https://eyecharity.weebly.com/aria_online.html.
7 See https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/.

http://www.isi.uu.nl/Research/Databases/DRIVE/
http://www.ces.clemson.edu/~ahoover/stare/
https://medicine.uiowa.edu/eye/rite-dataset
https://www5.cs.fau.de/research/data/fundus-images/
https://blogs.kingston.ac.uk/retinal/chasedb1/
https://eyecharity.weebly.com/aria_online.html
https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/
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Table 1 A summary of representative retinal image datasets and benchmarks.

Database IT
No. of 
images Vessel masks

Vessel 
treesa A/V Junctions Tortuosity AVR

DRIVE [24] CF 40 ✓ ✓ ✓ ✓   
STARE [25] CF 20 ✓      
HRF [29] CF 45 ✓      
CHASEDB1 [30] CF 28 ✓      

ARIA [31] CF 143 ✓      
DR HAGIS [32] CF 40 ✓      
VICAVR CF 58 ✓ ✓ ✓    
INSPIRE-AVR [33] CF 40  ✓ ✓   ✓

RVTD [34] CF 60   ✓  ✓  
IOSTAR [35] SLO 24 ✓ ✓ ✓    
AV-WIDE [36] UWFI 30  ✓ ✓    
VAMPIRE [37] FA 8 ✓      

Notes: For retinal imaging technique (IT), CF refers to color fundus photography, SLO is for scanning laser ophthalmoscopy, FA is for fluorescein angiogram, and 
UWFI is for ultra-wide fundus imaging. “Vessel masks” denotes vessel segmentation annotation, while “Vessel trees” is for annotation of individual vessel trees, 
and “A/V” stands for artery and vein vessel annotations. “Junctions” is bifurcation and crossing labeling. “Tortuosity” and “AVR” are two clinical relevant vessel 
readouts (see Section 4.4 for details).
aFor DRIVE, IOSTAR, VICAVR, and INSPIRE-AVR, individual vessel trees out of the OD are manually annotated and make available online (http://imed.nimte.
ac.cn/vetovessel-topology-groundtruth.html).

http://imed.nimte.ac.cn/vetovessel-topology-groundtruth.html
http://imed.nimte.ac.cn/vetovessel-topology-groundtruth.html
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The dataset of VICAVR8 includes 58 images, acquired by a TopCon NW-100 
nonmydriatic camera with a resolution of 768 × 584. Annotated vascular patterns 
include the caliber of the vessels measured at different radii from the optic disc as 
well as the vessel type (artery/vein) labeled by three experts.

INSPIRE-AVR9 [33] has 40 images of 2392 × 2048 pixels and corresponding 
arteriolar-to-venular diameter ratio (AVR) values observed by two ophthalmologists. 
The artery/vein vessel centerlines and the vessel types are further labeled by 
Dashtbozorg et al. [27].

RVTD10 [34] is for vascular tortuosity evaluation. It contains 60 zoomed images 
with 30 arteries and 30 veins that are ranked by vessel tortuosity. These image patches 
are extracted from 60 retinal images with 50-degree FOV and 1300 × 1100 pixels.

In addition to the typical CF photography, there are also benchmarks on different 
retinal imaging devices, including scanning laser ophthalmoscopy (SLO), ultra-wide 
fundus imaging (UWFI), and fluorescein angiogram (FA). 

• IOSTAR11 [35] includes 24 images, vessel segmentation, artery/vein, and 
OD annotations. Images are acquired with an EasyScan SLO camera with a 
45-degree FOV.

• AV-WIDE12 [36] has 30 ultra-wide FOV images, includes both healthy eyes as 
well as eyes with AMD. Each image is from a different individual, was obtained 
using obtained using an Optos 200Tx UWFI camera, and is of around 900 × 
1400 in size. Annotations of the vessel segmentation and the artery-vein labels 
are provided.

• VAMPIRE13 [37] contains eight ultra-wide FOV FA images, obtained from 
OPTOS SLO ultra-wide FOV device which may achieve up to 200-degree FOV 
with scanning SLO technique. These images were taken from two different FA 
image sequences, with vessel segmentation annotation being provided.

Fig.  1 shows a CF image and various vessel annotations, including vascular 
junctions, vessel segmented, artery/vein, and tree masks. Meanwhile, there are also 
efforts in applying multispectral imaging to retinal studies. For example, CMIF14 
[38] is a dedicated multispectral fundus image dataset of 35 sets of images from 
35 healthy young individuals of diverse ethnicities. The multispectral images are 
acquired by implementing a filter wheel into fundus camera, which gives rise to a set 
of 17 narrow band-pass filters for designated wavelengths in the range of 480–705 nm.  
This development is yet to be ready for clinical translation, nevertheless it offers 
novel insights into retinopathy.

 8 See http://www.varpa.es/research/ophtalmology.html.
 9 See https://medicine.uiowa.edu/eye/inspire-datasets.
10 See http://bioimlab.dei.unipd.it/RetinalVesselTortuosity.htm.
11 See http://www.retinacheck.org/datasets.
12 See http://people.duke.edu/~sf59/Estrada_TMI_2015_dataset.htm.
13 See https://vampire.computing.dundee.ac.uk/vesselseg.html.
14 See http://www.cs.bham.ac.uk/research/projects/fundus-multispectral/.

http://www.varpa.es/research/ophtalmology.html
https://medicine.uiowa.edu/eye/inspire-datasets
http://bioimlab.dei.unipd.it/RetinalVesselTortuosity.htm
http://www.retinacheck.org/datasets
http://people.duke.edu/~sf59/Estrada_TMI_2015_dataset.htm
https://vampire.computing.dundee.ac.uk/vesselseg.html
http://www.cs.bham.ac.uk/research/projects/fundus-multispectral/
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As shown in Table  1, the number of images in each dataset ranges from 8 to 
143. The typical dataset size is often several order-of-magnitude smaller when 
comparing to the popular image detection/segmentation benchmarks used in the 
broader computer vision community, such as ImageNet [39] and COCO [40] that 
typical have 20–200 K images or more in the training and validation sets. In a sense, 
this dataset characteristic makes the practical situation less appealing. The situation 
is especially pronounced when deep learning methods such as convolutional neural 
networks (CNN) are engaged, as CNN models often require access to large and well-
annotated training set. The CNN models trained in the retinal datasets thus tend to be 
less robust, and tend to be more vulnerable to small perturbation of input images or 
adversarial attacks at test run.

2.2  Evaluation metrics
With the increasing amount of activities toward vessel segmentation and tracing, 
there is naturally a demand for proper evaluation metrics, where different methods 
can be compared quantitatively and objectively on the same ground. The typical 
metrics are usually individual pixel-based, which including, for example, the 
 precision-recall curve, and the F1 score as a single-value performance indicator. The 
sensitivity and specificity pair could be another popular choice. It is worth noting 
that the commonly used metric of receiver operating characteristic curve or ROC 
curve may not be suitable in our situation here, since the positive vessel and negative 
background pixels or examples are severely imbalanced. As a well-established mean 
to globally quantify pixel-based deviations, a major drawback of this type of metrics 
is that the vasculature geometric information is not well preserved in evaluation. 
This motives the construction of structural type of metrics [41–43] to best account 
for the differences from vasculature geometry perspective. The metric considered 
in Ref. [41] places more emphasis toward the aspects of both detection rate and 
detection accuracy, where the vascular structures between the predicted and the 
reference are optimally matched as a solution to the induced maximum-cardinality 
minimum-cost graph matching problem. Meanwhile, the structural metric proposed 
by Gegundez-Arias et al. [42] involves the comparison of three aspects between the 
predicted vessel segmentation and the corresponding reference annotation, namely 
number, overlap, and length. Number refers to comparing the number of connected 
segments presented in prediction as well as in the annotation images. Overlap is to 
assess the amount of overlaps between the predicted segmentation and the reference 
annotation. Length is to examine the length similarity between the predicted and 
the annotated vessel skeletons. In a more recent attempt [43], a structural similarity 
score is designed to incorporate both location and thickness differences that the 
segmentation is departed from the reference vessel trees. A very detailed discussion 
on validation of retinal image analysis can be found in Ref. [44]. See also Chapter 9 
in this book for a discussion on validation techniques.

In addition to the aforementioned situation where there exists full annotations in 
the dataset for performance evaluation, there are often practical vessel segmentation 
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scenarios when no reference is available. This is tackled by, for example, the paper of 
Galdran et al. [45], where a similarity metric is presented to quantify the segmentation 
performance in the absence of reference annotation. A web-based client-server 
system is described in Ref. [46], which consists of a component for vessel tracing, an 
interactive editing interface for refining parameters and fixing prediction errors, and 
a component responsible for outputting the clinical indexes.

3  Vessel segmentation
It is often of foremost interest to segment the retinal blood vessels pixel by pixel in a 
retinal image, corresponding to the blood column within the vessels. An example of 
vessel segmentation on CF images is shown in Fig. 1D.

Existing methods can be roughly divided into two categories based on whether 
an annotated training set is required: unsupervised and supervised methods. 
While supervised methods learn their models based on a set of training examples, 
unsupervised methods do not require a training set.

3.1  Unsupervised segmentation
As mentioned, arguably the first research effort of retinal segmentation is by Matsui 
et al. [10], 45 years ago, where a mathematical morphology approach is taken toward 
the problem of vessel segmentation.

Matched filtering and mathematical morphology-based techniques were 
popular choices in the early days. In Ref. [47], Chaudhuri et  al. approximate the 
vessel segment profiles by a set of 1D Gaussian shaped filters over various spatial 
directions. As part of an initiative at the Vienna Eye Clinic for diagnosis and treatment 
of AMD, a dedicated pipeline is presented [48] to analyze retinal images based on 
SLO. In addition to separate modules for detecting the optic disk, fovea, and scotoma 
locations, its vessel segmentation module operates by matching the prototype zero-
crossing of the gradient profiles and applying grouping. Hoover et al. [25] discuss the 
application of 12 Gaussian shape-matched filters in 2D, which produces a response 
image recording the highest response at each pixel. This is followed by a sequence 
of carefully designed threshold probing steps to produce the predicted segmentation. 
The STARE dataset is introduced in this paper. A second-order Gaussian matched 
filtering approach is considered by Gang et al. [49] to detect vessels. The work of 
Staal et  al. [24] focuses on extracting the centerlines or ridges of the 2D vessels, 
which is achieved by means of a k-nearest neighbor classifier and sequential forward 
feature selection-based method. Importantly, it contributes the widely used DRIVE 
dataset. A set of three vessel detection variants are studied in Ref. [50] to account for 
noisy input images. The methods are derived from the likelihood ratio test in making 
local decisions, and model selection for choosing the optimal intrinsic parameters.  
A supervised likelihood ratio test is developed in Ref. [51] that combines matched-
filter responses, and customized measures of confidence and vessel boundary-ness. 
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A systematic approach is conducted in Ref. [52], where vessel structure is segmented 
using morphological operators, based on which the OD and macular are then local-
ized by likelihood ratio tests. Mendonca et al. [53] use four directional differential 
operators to detect the vessel centerlines, which then facilitate the morphological 
reconstruction of vessels. The work of Miri and Mahloojifar [54] proposes to use 
curvelet transform and morphology operators for edge enhancement, then apply a 
simple threshold along with connected components analysis for delivering the final 
segmentation. Martinez-Perez et  al. [55] conduct segmentation by a combination 
of multiscale analysis of gradient and Hessian information and region-growing ap-
proach. A multiresolution 2D Hermite model is investigated in Ref. [56], where a 
quad-tree is used to organize the spatial configuration, an expectation- maximization 
type optimization procedure is developed to estimate the model parameters. 
Moreover, Bankhead et al. [57] utilize isotropic undecimated wavelet transform for 
unsupervised segmentation. In segmenting UWFI Fundus FA images, Perez-Rovira 
et al. [37] employ steerable filters and adaptive thresholding. An iterative approach 
is devised in Ref. [58] to include new vessel structures by local adaptive thresholds. 
A similar strategy is also considered by Xu et al. [59], where a tree-structured shape 
space is considered and for retinal vessel segmentation, local threshold is applied 
recursively. The work of Kovacs and Hajdu [60] advocates a two-step process. First, 
generalized Garbor filter-based template matching is used to extract the centerlines. 
Second, iterative contour reconstruction is carried out based on the intensity charac-
teristics of the vessel contours.

Variational methods have been another popular line of techniques in retinal 
vascular segmentation. A deformable contour model is adopted by Espona et  al. 
[61], by incorporating the snake method with domain-specific knowledge such as 
the topological properties of blood vessels. In Ref. [62], a dedicated active contour 
model is developed that uses two pairs of contours to capture each side of the vessel 
edges. To address the challenging pathological images, Lam and Yan [63] investigate 
the application of divergence operator in the gradient vector field. Moreover, to deal 
with the issue of multiconcavity in the intensity profile of especially pathological 
fundus images, a variational approach is taken in Ref. [64] based on perceptual 
transform and regularization-based techniques. An active contour model with local 
morphology fitting is discussed in Ref. [65] to segment vessels in 2D angiogram. 
The combined use of regional information and active contour techniques is further 
considered in Refs. [66, 67]. In Ref. [35], new filters are proposed based on lifting a 2D 
image is lifted by Lie-group into a 3D orientation score, and by applying multiscale 
second-order Gaussian derivatives, and follow-up eigensystem analysis of the left-
invariant Hessian matrix. After projecting back from 3D space to 2D image plane, the 
segmentation result is obtained by applying a global threshold. Recently, a minimal 
path approach is reported in Ref. [68], where a dynamic Riemannian metric is updated 
during the course of a single-pass fast marching method. It is sometimes advantageous 
to perform interactive image analysis. This is addressed by Poon et  al. [69],  
where a multiscale filtering approach is designed to simultaneously compute center-
lines and boundaries of the retinal vessels.
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Other techniques also exist. For example, by establishing an analogy between 
quantum mechanics and image processing, it is proposed in Ref. [70] to transform 
image pixels to quantum systems such that they can be evolved from an initial state 
to a final state governed by the Schrodinger equation.

3.2  Supervised segmentation
The alternative to the unsupervised paradigms are learning-based methods, in which 
a set of training examples is provided to learn a model that is expected to segment 
input retinal images at test time as well as the performance it has gained during 
training. One early work is that of Akita and Kuga [11], where neural networks are 
used in segmenting retinal vasculature. A system is developed in Ref. [71], where a 
patch-based neural network model is learned by backpropagation to classify each 
pixel as being vessel or not, then OD and fovea regions are obtained via template 
matching.

A typical supervised approach is to first construct or develop a set of dedicated 
features or filters, then to build a statistical model based on the features as sufficient 
statistics, with model parameters being estimated (i.e., learned) from a set of training 
examples. For example, a local patch-based approach is considered in Ref. [72], where 
an AdaBoost classifier is in place to work with 41 features extracted from the local image 
patch of the current pixel, where the pixel is to be predicted as being either vessel or not. 
Martin et al. [73] devise gray-level and moment invariants-based features for segmenting 
the retinal vessels using neural networks. Ricci et al. [74] work with orthogonal line 
operators and support vector machine to perform pixel-wise segmentation. Becker et al. 
[75] present a discriminative method to learn convolutional features using gradient 
boosting regression technology. In Ref. [76], a pool of difference-of-Gaussian (DoG) 
filters is used that after training, filters are adaptively selected to best fit the current 
vessel of interest. A learning-based DoGs filtering approach is proposed in Ref. [77], 
with one application focus being about the detection of vascular junction points, where 
orientation is achieved via shifting operations. Empirically it is shown robust to contrast 
variations and the presence of noises. Furthermore, many learning-based methods [78–
81] also advocate the automation of the feature learning process. For example, Soares 
et al. [78] elaborate upon 18-dimensional Gabor response features to train two Gaussian 
mixture models (GMMs), which are further employed to produce a binary probability 
map for a test image. The method of Becker et al. [81] employs a gradient boosting 
framework to optimize filters and often produces impressive performance.

Several learning paradigms, including graphical models and ensemble learning, are 
presented with very promising results. A discriminatively trained, fully connected CRF 
approach is developed by Orlando and Blaschko [82]. This is followed by Orlando [83] 
with more expressive features in their fully connected CRF model. Besides, the work of 
Fraz et al. [30] showcases an ensemble classification approach consisting of bagged and 
boosted decision trees, with features from a variety of aspects including orientations of 
local gradients, morphological transformations, and Gabor filter responses.
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Instead of segmenting vessel pixels directly, a radial projection method is utilized 
in Ref. [84] to locate centerlines, based on steerable wavelet filtered output of a 
fundus image. Meanwhile, a semisupervised learning step extracts the remaining 
vessel structures. Similarly, an iterative algorithm is introduced by Gu and Cheng 
[85], where starting from the main vessel trunk, small and thin vessel branches 
and difficult regions around the boundaries are iteratively refined by retrieving and 
executing a proper local gradient Boosting classifiers, which is stored in a latent 
classification tree model constructed by Chow-Liu method.

3.3  Deep learning
As a particular supervised segmentation paradigm, a number of end-to-end deep 
learning approaches have been developed in our problem scenario with notable 
performance improvements. The N4-field [86], as an example, combines the CNN 
with nearest neighbor search to detect local patches of natural edges as well as 
thin and long objects. A CNN model is also trained in Ref. [87] based on 400,000 
preprocessed image patches obtained from the training sets of DRIVE, STARE, or 
CHASEDB1 datasets, which are essential for ensuring reliable test performance. 
Similarly, a deep neural network is used by Li et al. [88] to model the cross-modality 
data transform for vessel segmentation in retinal images. Fu et al. [89] propose to 
incorporate both CNN and CRF models for segmenting the full input fundus image. 
The deep learning approach of Yan et al. [90] incorporates both conventional pixel-
wise loss and segment-level loss terms to achieve a globally plausible solution. In 
addition, as demonstrated with the impressive performance in Ref. [91], it is possible 
to address multiple tasks jointly, including vessel segmentation and, for example, 
optic disk detection.

There exists, however, one major issue with the current segmentation task. DRIVE 
(40 annotated images) and STARE (20 annotated images) datasets have been the de 
facto benchmark in empirical examination of retinal image segmentation techniques. 
Meanwhile, annotations from, DRIVE and STARE are from multiple medical experts, 
which result in different reference (“gold”) standards. The disagreement from multiple 
experts may be attributed to the inevitable subjectiveness and variability of expert 
judgment. It also reflects the difficulty level of the task and the reliability of the gold 
standard in the context. As our algorithms are approaching human-level performance, 
it becomes increasingly difficult to quantitatively validate new algorithms, as the 
vessels produced by these methods on test images are more agreeable to the particular 
reference standard they are trained with, when comparing with the other reference 
standards. This suggests an overall performance saturation of the current benchmark, 
most possibly due to the small dataset size, and stresses the need for larger benchmark 
datasets. Some steps have been taken toward addressing this concern. Among them, 
it is shown in Ref. [92] that the retinal segmentation performance can be improved 
by incorporated (potentially infinitely many) synthesized images into the typically 
small training set. An even more challenging problem is performing fundus image 
segmentation on a new and distinct fundus image dataset in the absence of manual 
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annotations. To address this problem, Zhao et al. [93] present a supervised learning 
pipeline. The key is the construction of a synthetic retinal image dataset capable 
of bridging the gap between an existing reference dataset (where annotated vessel 
structures are available) and the new query dataset (where no annotation is available). 
Then existing supervised learning segmentation methods are to be engaged to learn 
a model dedicated to the set of query images.

Due to the visual similarity between retinal vessels from, for example, fundus 
imaging and neurons from, for example, confocal microscope, there are also many 
efforts in devising algorithms to address the more general problem of segmenting 
such tubular structured objects [85, 94–100], with retinal blood vessel being a special 
case. For example, the well-known local Hessian-based vessel enhancement method 
developed by Frangi et al. [94] has been widely used for segmenting both 2D and 
3D vessels. A mathematical morphology and curvature evaluation-based method 
was developed by Zana and Klein [95] to segment the vessel-like structures from 
background. Minimal path techniques are considered in a series of closely related 
efforts [101–103] to connect vessel segments in 2D or 3D. The work of Benmansour 
and Cohen [96] also addresses generic 2D and 3D segmentation of tubular structured 
objects in images, with an interactive method using minimal path and anisotropic 
enhancement. A multiscale centerline detection method is presented in Ref. [98] 
based on learned filters and GradientBoost regression technique. The method of Gu 
et al. [100] attempts to capture structural and contextual features from fundus images 
through their proposed data-driven feature learning procedure.

4  Vessel tracing
The topological and geometrical properties of retinal vessel trees are vital in screening 
for and diagnosing diseases, which call for proper tracing of the individual vessel 
trees from fundus images. The problem of vessel tracing is more than segmentation 
where vessel pixels are separated from the backgrounds, in that we would like to 
first separate artery and vein vessels, as shown in Fig. 1E. An equivalent problem 
is to detect junctions and decide as being either branching or crossing. Individual 
vessel trees usually could be distinguished from the rim of the optic disk, as shown 
in Fig. 1F, thus we answer the question of which pixel belongs to which of the vessel 
trees.

4.1  Vascular junction identification
Detecting and categorizing the junction points into either bifurcation or crossing is 
useful in vessel tree extraction and classification. Fig.  1B illustrates an exemplar 
annotation of such bifurcation and crossing points. In one of the early efforts, a 
morphological-type edge detection algorithm is used in Ref. [104] to automate the 
recognition of arteriovenous intersections. An image processing-based approach 
is considered in Ref. [105] that first extracts the vessels by preprocessing filtering 



1074  Vessel tracing

and k-means, then utilizes a combined cross-point number method for thinning, and 
 pattern-matching classification of the junction points as either branching or crossover. 
Calvo et al. [106] consider the detection and classification of key points pertaining to 
bifurcations and crossovers in the retinal vessel trees. A two-step method is proposed, 
which uses filters and morphologic operations for detection, and the extracted key 
point-based features for classification into either bifurcations or crossovers. Started 
with a segmented retinal image, Azzopardi and Petkov [28] deploy a set of blurred and 
shifted Gabor filters that are trained from a set of predefined bifurcation prototypes, 
and demonstrate satisfactory detection performance on DRIVE and STARE datasets. 
In addition to their initial work [107] where self-organizing feature maps are used 
to perceptually group the retinal segments around the junction points, Qureshi et al. 
[108] develop a probabilistic model of various junction points such as terminals, 
bridges, and bifurcations, and their configurations.

4.2  Vascular tree separation
The work of Tamura et al. [109] is among the early efforts, where the blood vessels 
are traced by a second-order derivative Gaussian filter from an initial point, while the 
width of the blood vessel is obtained as the zero-crossing interval of the filter output. 
Similarly, starting from a set of initial points, the work of Can et al. [110] tracks 
vessels by recursively applying a set of directional low-pass filters to the proper 
directions along the vessel centerlines detected so far from the input retinal angiogram 
images. It also extracts the branching and crossover points as a by-product. A three-
step approach is proposed in Ref. [111] to reliably detect vascular bifurcations and 
crossovers, which involves initialization of junction locations, iterative estimation, 
and backtrace-based refinement.

Kalman filter-based tracking method could be a natural choice, which has been 
considered by, for example, Yedidya and Hartley [112]. To reconstruct individual 
retinal vascular trees, Lin et al. [113] start by spreading initial seeds along the vessels. 
The vessel segments are then extracted via a likelihood ratio test. At a junction point, 
the vessel tree assignment is then resolved by applying a locally minimum-cost 
matching as well as extended Kalman filtering.

One important observation is that both local and global contexts are helpful in 
resolving the bifurcation and crossover issue. For example, at a junction, it is valuable 
to examine the angular, morphological, and textural properties of all segments at 
the junction. In fact, the inclusion of information from nearby junctions could also 
facilitate a better local decision at current junction. This line of thoughts inspires the 
graph-based formulation where each vessel segment becomes a node, and a contact 
between two adjacent segments is represented by an edge between the two nodes. 
This naturally leads to an undirected graph representation. The tracing problem has 
been thus formulated as an inference problem in a Markov random field [114], a 
label propagation problem on undirected graphs [115], or directed graphs [116–118]. 
Similar graph-based methods are also adopted in Refs. [119, 120].
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Variational approaches have also been considered in this context. Inspired 
biologically by the cortical orientation columns in primary visual cortex, Bekkers 
et  al. [121] advocate a special Euclidean group, SE(2), on which to base their 
retinal vessel tracking system. Bekkers and co-workers subsequently introduce an 
interesting differential geometry approach [122], where vessel tracing is formulated 
as sub- Riemannian geodesics on a projective line bundle. This is further investigated 
in Ref. [123] as a nilpotent approximations of sub-Riemannian distances for fast 
perceptual grouping of blood vessels in 2D and 3D. Abbasi-Sureshjani et al. [124] 
consider a 5D kernel approach obtained as the fundamental solution of the Fokker-
Planck equation to deal with the presence of interrupted lines or highly curved blood 
vessels in retinal images. A mathematical contour completion scheme is proposed 
by Zhang et al. [125] based on the rotational-translational group SE(2). The original 
2D disconnected vessel segments are lifted to a 3D space of 2D location and an 
orientation, where crossing and bifurcations can be separated by their distinct 
orientations. The contour completion problem can then be characterized by left-
invariant PDE solutions of the convection-diffusion process on SE(2).

The tracing problem has indeed attracted research attentions from diverse 
perspectives that go beyond the paradigms mentioned so far. In terms of deep 
learning, the work of Ventura et al. [126] extracts the retinal artery and vein vessel 
networks by iteratively predicting the local connectivity from image patches using 
deep CNN. Uslu and Bharath [127] consider a multitask neural network approach 
to detect junctions in retinal vasculature, which is empirically examined in DRIVE 
and IOSTAR benchmarks with satisfactory results. A fluid dynamic approach is 
introduced in Ref. [128] to determine the connectivity of overlapping venous and 
arterial vessels in fundus images. Moreover, aiming to balance the trade-off between 
performance and real-time computation budget, Shen et  al. design and analyze 
in Ref. [129] the optimal scheduling principle in achieving early yield of tracing 
the vasculature and extracting crossing and branching junctions. It is also worth 
mentioning that similar problem has also been encountered by the neuronal image 
analysis community with numerous studies of datasets and methods [130–132]. 
There are also efforts in addressing the more general problem of tracing tubular 
structured objects that include retinal vessel tracing as a special case [117,118,126].

4.3  Arterial/venous vessel classification
The classification of blood vessels into arterioles and venules is a fundamental step in 
retinal vasculature analysis, and is a basis of clinical measurement calculation, such 
as AVR. This requires not only identifying individual vessel trees, but also assigning 
each vessel tree as being formed by either arteries or veins. Interested readers may 
consult Miri et al. [17] for a detailed review of this subject.

As an early research effort, Akita and Kuga [11] consider the propagation of 
artery/vein labeling by a structure-based relaxation scheme on the underlying 
vascular graph. A vessel tracking method is presented in Ref. [111] to resolve 
the connectivity issues of bifurcations and crossings. A semiautomatic system 
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is described in Ref. [133], consisting of segmenting the vessel pixels, thinning to 
obtain vessel skeletons, and tracking individual vessel trees. As a result, a number 
of geometric and topological properties are subsequently quantified, which include 
vessel segment lengths, diameters, branching ratios, and angles. In Ref. [134], the 
problem of artery versus vein separation from a vascular graph is cast as a SAT-
problem, where a heuristic AC-3 algorithm is utilized to address a double-layered 
constrained search problem. Instead of working with fundus image of a single 
wavelength, it is considered in Ref. [135] to work with a specific fundus imaging 
set-up that acquires two images simultaneously, at different wavelengths of 570 and 
600 nm, respectively. By exploiting the difference between artery and vein vessels 
that have distinct central reflex patterns, an SVM classification-based method is 
proposed to identify the vessel types. A multistep pipeline is considered in Ref. 
[136]. First, a vesselness value is computed for each pixel, which forms a vessel 
score image. Then points are sampled from local maxima points of the score image, 
and these points are linked into spanning trees by solving the induced k-cardinality 
arborescence problem with ant colony optimization-based algorithm. Based on 27 
hand-crafted features, a linear discriminant classifier is used in the work of Niemeijer 
et al. [33] to classify vessel segments into arteries and veins. In Ref. [26], Hu et al. 
use a graph-based metaheuristic algorithm to segment and separate a fundus image 
into multiple anatomical trees, while the RITE dataset is also constructed. In Ref. 
[27], the classification of artery versus vein vessel segments is carried out based on 
the analysis of a graph extracted from the retinal vasculature, where the annotation 
of annotate artery and vein vessels is also provided for both DRIVE and INSPIRE-
AVR datasets. For ultra-wide field SLO, Pellegrini et  al. [137] also consider a 
graph-cut-based approach, where the node and edge-related features are manually 
designed features based on local vessel intensity and vascular morphology. A system 
is developed in Ref. [138] to segment vessels by Otsu binary thresholding, and obtain 
skeleton by applying mathematical morphology. This is followed by localization 
of branch points, crossing points, and end points. As a result, a graph structure is 
formed, and the Dijkstra algorithm is used to search vessel subtrees by minimizing 
the accumulative edge costs. Finally, a k-means clustering algorithm is executed to 
separate artery and vein subtrees.

Targeting at wide-FOV images, a planar graph-based method is considered by 
Estrada et al. [36] in constructing a likelihood model to take into account the prior 
knowledge regarding color, overlap, and local growth aspects of vessel segments at 
junctions. A heuristic search is thus carried out for optimal separation of the artery 
and vein vessel trees.

4.4  Clinical relevant vessel readouts
Retinal vascular abnormalities, for example widening or narrowing of retina blood 
vessels and increased vascular tortuosity, provide significant hints on various 
diseases, such as diabetes, hypertension, and coronary heart disease. Measurements 
to quantify retinal vascular changes are as follow:
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Diameter changes. AVR, AVN, and FAN are three quantification measurements 
of diameter changes. AVR calculation is restricted to an area of 0.5–1.0 disc 
diameters from the OD. An automated pipeline is presented in Ref. [139], 
which segments and skeletonizes the vessels, and classifies arterial/venous 
vessel segments that are separated at the junction points. The six widest artery 
and vein segments are selected for AVR calculation, which is measured by an 
iterative algorithm. AVN is a phenomenon where venular caliber decreases 
as an arteriole crosses over a venule. A four-level grading approach of AVN 
is proposed in Ref. [140]. FAN refers to arterial vascular segment whose 
diameter ≥50 μm narrows. Severity degree of FAN is evaluated by the length 
of narrowing vessels compared with the diameter of OD.
Tortuosity alteration. This is an early indicator of a number of vascular diseases. 
Some of tortuosity quantification of arteries and veins approaches are (1) 
tortuous or nontortuous classification; (2) tortuosity ranking of vessel segments 
[34]; and (3) tortuosity grading of individual vascular trees [141].

5  Summary and outlook
A significant amount of effor has been devoted to vasculature analysis from retinal 
images, which have led to noticeable progress in clinical quantifications to improve 
diagnosis and prognosis of related diseases. There are also a number of promising 
research directions, some of them discussed in the following sections.

5.1  Vasculature analysis in emerging imaging techniques
We highlight here the emerging retinal imaging techniques referred to as 3D, 
multimodal, and mobile imaging.

3D vessel analysis. To date, the majority of existing benchmark datasets and 
research efforts are devoted to segmentation in 2D retinal fundus images. Being 
a 2D projection of the 3D retinal vasculature, the retinal fundus images contains 
necessarily only a partial observation of the underlying 3D vessels. Meanwhile, 
with emerging 3D imaging techniques such as spectral-domain OCT (SD OCT 
or 3D OCT) and plenoptic ophthalmoscopy [142], we are now capable of 
imaging the 3D vasculature volume of the retina. It is thus possible to directly 
extract the 3D retinal vasculature volumes.
The endeavors of Haeker et al. [143] and Garvin et al. [144] are among the first 
in devising dedicated 3D segmentation techniques for time-domain macular 
scans. In terms of spectral-domain OCT volumes, the work of Niemeijer 
et al. [145] considers a k-NN pixel classification approach where Gaussian 
filter banks are used to produce good features. The results are evaluated on 
the macular centered scans as well as the optical nerve head centered scans. 
An interactive 3D segmentation approach is developed by Fuller et al. [146]. 
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Moreover, Guimaraes et al. [147] report segmentation and reconstruction of 3D 
retinal vasculature. With the further advancement of 3D imaging techniques, 
this exciting direction of 3D vessel analysis possesses excellent research 
potential. It is also well connected to existing 3D blood vessel analysis efforts of 
other organs and via different instruments such as magnetic resonance imaging.
Multimodal vessel analysis. One prominent example of multimodal retinal 
image analysis could be the combined usage of 2D fundus and 3D OCT 
images in vessel segmentation and tracing. Here, Hu et al. [148] investigate 
the integration of 2D fundus image and corresponding 3D OCT images in 
retinal vessel segmentation. SLO fundus image and corresponding macular 
OCT slices are jointly considered in Ref. [149] in two steps. The first step 
involves 2D vessel segmentation of fundus images in curvelet domain, with 
the side information from multiple OCT slices. The second step focuses on 3D 
reconstruction of the blood vessels from the OCT data. In addition to images, 
patient-related information such as electronic medical records and genetic 
data could also be taken into account for better disease diagnosis, and patient 
prognosis and treatment.
Analyzing mobile retinal images. As stated in Ref. [150], the recent development 
of portable fundus cameras [151] and smartphone-based fundus imaging 
systems have led to considerable opportunities as well as new challenges to 
retinal image analysis, such as the demand for more affordable imaging devices 
with perhaps lower computation cost [152]. To address the need of the emerging 
mobile retinal diagnostic devices that calls for segmentation techniques with 
low memory and computation cost, Hajabdollahi et al. [152] propose to train 
a simple CNN model-based pruning and quantization of the original full-
sized model, that is capable of retaining the performance with much reduced 
computation and size. Looking forward, we expect further and considerable 
progresses along this direction.

5.2  Benchmarks and metrics
Benchmark datasets, such as ImageNet [39] and COCO [40], have played a vital role 
in fueling the recent computer vision breakthroughs. It has been observed that these 
successful datasets are both of large scale, and richly annotated. For example, over 
the years, COCO has introduced and aggregated various annotations on categories 
and shapes of individual objects and stuffs (backgrounds). Currently, it is capable 
of hosting a broad variety of closely related tasks including instance segmentation, 
stuff segmentation, object detection, person keypoint localization, as well as image 
captioning, visual dialog, image attributes, text detection and recognition, among 
others. By contrast, existing retinal vasculature image datasets, as shown in Table 1, 
are of small size, and often not richly annotated. While most state-of-the-art results 
are still reported based on the well-known benchmarks of DRIVE and STARE, the 
low-resolution images considered in these datasets are considerably lagging behind 
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nowadays widely available high-resolution retinal imaging in eye clinics. These 
practical limitation and discrepancy indeed call for the curation of better benchmark 
sets of large scale, richly annotated, and aligned well with the current retinal imaging 
practice. One major issue with empirical evaluation lies in the quantification of how 
much the predicted vessel trees deviate from the reference annotation. A number of 
structural metrics [41–43] are suggested, yet a consensus from the community is still 
to be reached.
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